Reformulated radial basis neural networks trained by gradient descent
نویسنده
چکیده
This paper presents an axiomatic approach for constructing radial basis function (RBF) neural networks. This approach results in a broad variety of admissible RBF models, including those employing Gaussian RBF's. The form of the RBF's is determined by a generator function. New RBF models can be developed according to the proposed approach by selecting generator functions other than exponential ones, which lead to Gaussian RBF's. This paper also proposes a supervised learning algorithm based on gradient descent for training reformulated RBF neural networks constructed using the proposed approach. A sensitivity analysis of the proposed algorithm relates the properties of RBF's with the convergence of gradient descent learning. Experiments involving a variety of reformulated RBF networks generated by linear and exponential generator functions indicate that gradient descent learning is simple, easily implementable, and produces RBF networks that perform considerably better than conventional RBF models trained by existing algorithms.
منابع مشابه
On the construction and training of reformulated radial basis function neural networks
Presents a systematic approach for constructing reformulated radial basis function (RBF) neural networks, which was developed to facilitate their training by supervised learning algorithms based on gradient descent. This approach reduces the construction of radial basis function models to the selection of admissible generator functions. The selection of generator functions relies on the concept...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملTraining radial basis neural networks with the extended Kalman filter
Radial basis function (RBF) neural networks provide attractive possibilities for solving 9 signal processing and pattern classi!cation problems. Several algorithms have been proposed for choosing the RBF prototypes and training the network. The selection of the RBF 11 prototypes and the network weights can be viewed as a system identi!cation problem. As such, this paper proposes the use of the ...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 10 3 شماره
صفحات -
تاریخ انتشار 1999